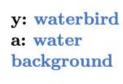
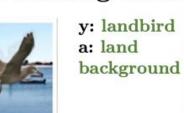
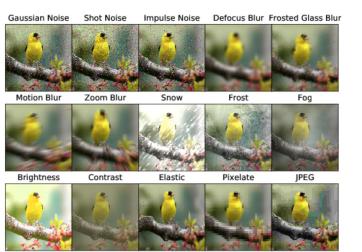
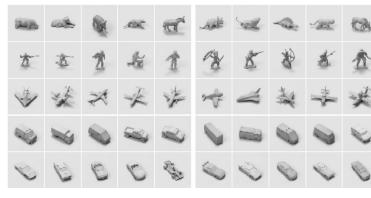


Tradeoffs Between Contrastive and Supervised Learning: An Empirical Study

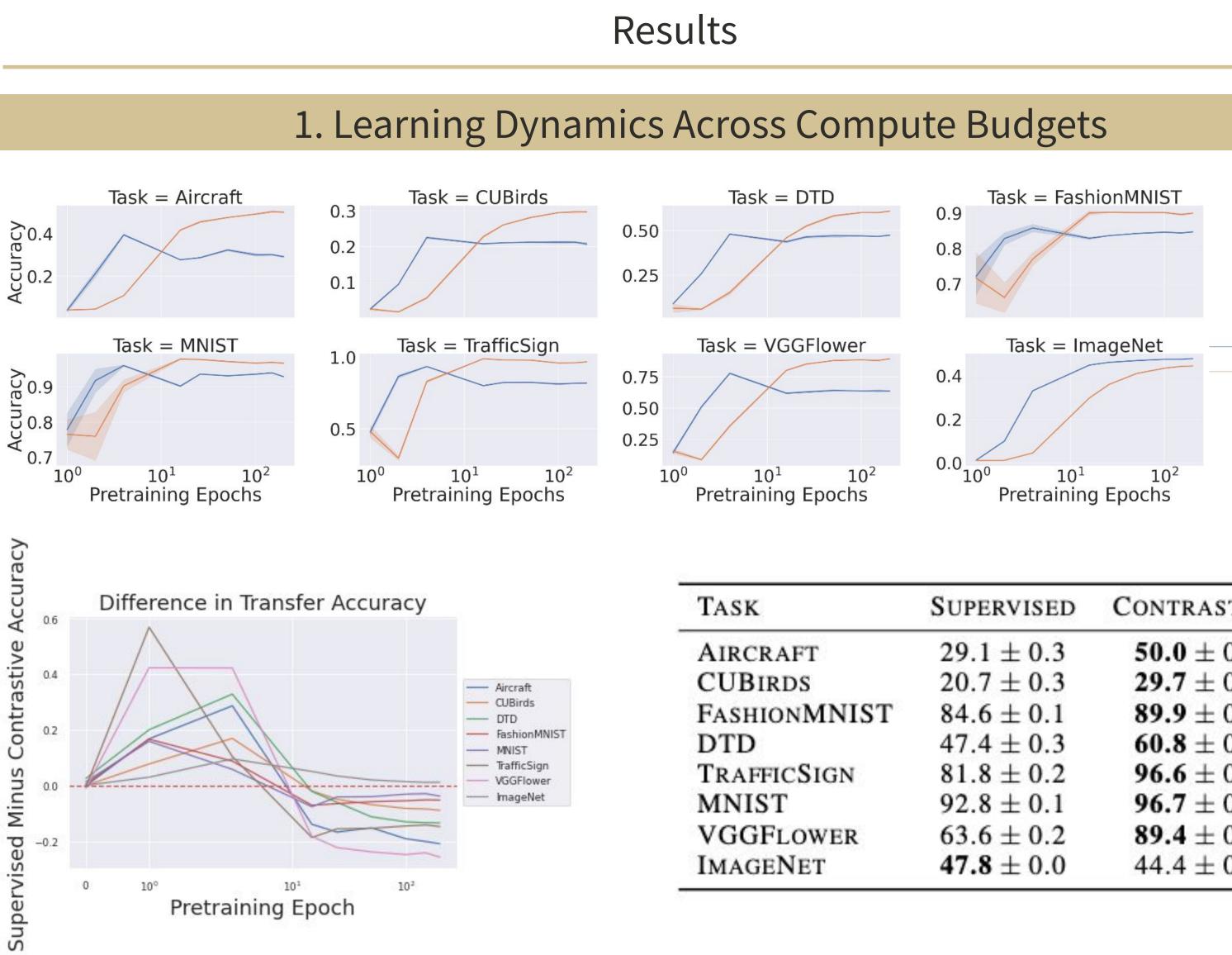

Motivation

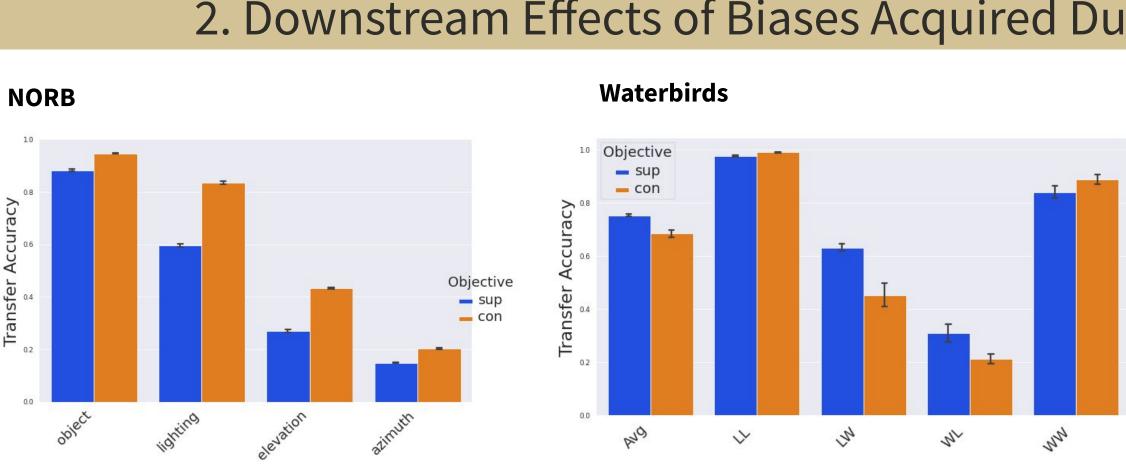

- Self-supervised pretraining for computer vision has grown in popularity recently due to the cost of annotating data
- Contrastive learning has achieved state-of-the-art results, underscoring the need for studying the real-world tradeoffs between contrastive and supervised pretraining. Specifically:
 - 1. Is contrastive learning better **across all compute** budgets?
 - 2. For larger compute budges, is supervised pretraining better **on tasks where an object-centric bias is important**?


Methodology


- Experimental Settings
 - Pretraining: 2 ResNet-18 models on ImageNet (200 epochs)
 - Standard cross entropy loss for supervised, InfoNCE objective for the contrastive model
 - Transfer: Linear evaluation protocol (100 epochs)
 - Datasets:
 - Q1 (Transfer across compute budgets): Aircraft, CUBirds, FashionMNIST, DTD, TrafficSign, MNIST, VGGFlower, ImageNet
 - Q2 (Object-centric bias): Waterbirds, Norb, ImageNet-C (below)

Common training examples





(Top) Waterbirds [1]; (Bottom L) ImageNet-C [2]; (Bottom R) NORB [3]

Does the object-centric bias of supervised learning improve downstream performance on transfer tasks? We find strong effects for Waterbirds and ImageNet-C, but weaker effects for NORB.

Test examples

y: waterbird a: land background

Ananya Karthik, Mike Wu, Noah Goodman, Alex Tamkin

{ananya23, wumike, ngoodman, atamkin} @stanford.edu

Department of Computer Science, Stanford University

Downstream accuracy of contrastive and supervised models on 8 transfer tasks for different pretraining

2. Downstream Effects of Biases Acquired During Pretraining

ImageNet-C

Supervised	Contra
91.08 +/- 0.279%	95.41 ·

Relative mCE (Mean Corruption Error): performance degradation from clean to corrupted data, lower is better

	Conclusions
	 Contrastive learning is not necessarily better acros
	all compute budgets: different pretraining algorithms produce better representations at different budgets
	 different budgets Transfer performance does not increase
	monotonically across pretraining → potential
Objective Supervised Contrastive	misalignment between representations learned for pretraining vs transfer
	 While the contrastive model eventually achieves
	higher performance, for the first 10-15 epochs th
	supervised model yields better representations
	for downstream tasks \rightarrow potential differences in
	the two representation learning processes
	 We encourage developers of new pretraining
VE	techniques to release learning dynamics curves
3	• Contrastive learning is not necessarily better acros
2 1	all tasks: the supervised model eventually achieves
2	worse downstream accuracy on most tasks, but the
1	object-centric bias of ImageNet pretraining aids
1	transfer on some tasks, especially WaterBirds
1	(reliance on spurious correlations) and ImageNet-C
0	(robustness to common corruptions)
g budgets	Future Work
	 Investigating whether these conclusions hold across
	a wide range of architectures, hyperparameters,

datasets, and training objectives

• Exploring other dimensions along which pretraining

algorithms differ (e.g. Cole et al. 2021 and Horn et al.

2021 find that supervised learning tends to perform

better on fine-grained classification tasks)

• Studying how pretraining objectives shape the

behavior of models in ambiguous scenarios

- astive +/- 0.157%